

C Programming

Chapter 1

Introduction to C

What is C?

 C is a general-purpose, high-level programming language. It was
developed by Dennis Ritchie at Bell Labs in the early 1970s.

 It is the most widely used programming language in the world.

 C is used for developing applications and games.

 Even if it’s old, it is still a very popular programming language.

Why Learn C?

 It is one of the most popular programming language in the world.

 C is very fast, compared to other programming languages, like Java
and Python.

 C programming can be compiled and executed on various platforms,
making it highly portable.

First C Program

Output:

#include <stdio.h>

int main ()

{

 printf("Hello World!");

 return 0 ;

}

Hello World!

C Syntax Explanation

Explanation: This is a preprocessor that tells the compiler to include the

stdio.h library, which contains functions for input and output, like printf.

Explanation: This is the definition of the main function. Every C program

must have a main function as the entry point. The int means that the

function returns an integer value, which is typically used to indicate whether

the program executed successfully or encountered an error.

Explanation: This is the opening brace that marks the beginning of the

main body.

Explanation: The printf function is used to print output to the console.

Here, it prints the string "Hello World!" to the screen. The ; at the end marks

the end of the statement.

Explanation: This statement ends the main function and returns the value

0 to the console. A return value of 0 usually signifies that the program

executed successfully.

Explanation: This is the closing brace that marks the end of the main

function.

#include <stdio.h>

int main ()

{

printf("Hello World!");

return 0;

}

C Comments

Comments are ignored by the compiler and do not affect the execution of

the program.

Single Line Comments

 Single-line comments start with two forward slashes (//).

 Any content between // and the end of the line is ignored by the
compiler.

Example:

Multi-line comments

 Multi-line comments start with /* and ends with */.

 Any content between /* and */ will be ignored by the compiler.

Example:

#include <stdio.h>

int main()

{

 //This is a single line comment

 printf("Hello World!");

 return 0;

}

#include <stdio.h>

int main()

{

 /* This is a

 multi line

 comment */

 printf("Hello World!");

 return 0;

}

Chapter 2

C Variables

Variables are containers for storing data values.

In C, variables are classified into different types:

 int: an integer variable can store only an integer.

 float: a floating point variable can store only a floating point
numbers.

 char: a character variable can store only a character.

Variable Declaration

Variable declaration is the process of specifying the name and type of a
variable before using it in the program.

Example:

Rules for Naming Variables

We can assign any name to the variable as long as it follows the following
rules:

 A variable name can only contain alphabets, digits, and
underscores.

 A variable cannot start with a digit.

 A variable cannot include any white space in its name.

Data Types

A data type in C specifies the type of data that a variable can store.

C provides several built-in data types, including:

// Declare a variable

int myNum;

// Assign a value to the variable

myNum = 15;

Data Type Size Description

int 2 or 4 bytes Stores whole numbers,
without decimals

float 4 bytes Stores fractional
numbers, containing one
or more decimals.

char 1 byte Stores a single
character/letter/numbers

double 8 bytes Stores fractional
numbers, containing one
or more decimals.

Example:

Output:

C Constants

Constants in C are variables that do not change during program
execution. Constants are also referred to as literals. There are several
different types of constants, such as numeric constants, character
constants, string constants.

#include <stdio.h>

int main()

{

 int integer = 20;

 float floating = 10.32;

 char character = 'B';

 printf("%d\n", integer);

 printf("%f\n", floating);

 printf("%c\n", character);

 return 0;

}

20

10.320000

B

The following are some typical C constant types:

 Integer Constants: The numbers with decimals (base 10),
hexadecimals, binary, or octal representations are known as integer
constants.

 Floating-Point Constants: Real values with an exponent or a decimal
point are represented as floating-point constants.

 String Constants: String constants are enclosed in double quotes,
e.g., "Hello, World".

Example:

Chapter 3

C Operators

Operators are symbols that perform operations on operands.

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations such as
addition, subtraction, multiplication, division, and modulus.

Operator Description Syntax

+ Addition a + b

- Subtraction a - b

* Multiplication a * b

/ Division a / b

% Modulus a % b

const int minutesPerHour = 60;

const float PI = 3.14;

Example:

Output:

Relational Operators

Relational operators are used to compare the relationship between two
operands.

Operator Description Syntax

> Greater than a > b

<< /td> Less than a < b

>= Greater than or equal to a >= b

=<< /td> Less than or equal to a <= b

== Equal to a == b

!= Not equal to a != b

Example:

#include <stdio.h>

int main ()

{

 int a = 5;

 int b = 3;

 printf ("a + b = %d\n", a + b);

 printf ("a - b = %d\n", a - b);

 printf ("a * b = %d\n", a * b);

 printf ("a / b = %d\n", a / b);

 printf ("a % b = %d\n", a % b);

 return 0;

}

a + b = 8

a - b = 2

a * b = 15

a / b = 1.6

a % b = 0.15

Output:

Logical Operators

Logical operators are used to perform logical operations on two or more
conditions.

Operator Description Syntax

&& AND Operator a && b

|| OR Operator a || b

! NOT Operator !a

Example:

#include <stdio.h>

int main ()

{

 int a = 5;

 int b = 3;

 printf ("a < b : %d\n", a < b);

 printf ("a > b : %d\n", a > b);

 printf ("a == b = %d\n", a == b);

 printf ("a != b : %d\n", a != b);

 return 0;

}

a < b : 0

a > b : 1

a == b = 0

a != b : 1

#include <stdio.h>

int main ()

{

 int a = 15;

 int b = 6;

 printf ("a && b : %d\n", a && b);

 printf ("a || b = %d\n", a || b);

 printf ("!a: %d\n", !a);

 return 0;

}

Output:

Assignment Operators

Assignment operators are used to assign values to a variable.

Operator Description Syntax

= It assigns the right side
operand value to the left
side operand.

a = b

+= It adds the right operand
to the left operand and
assigns the result to the
left operand.

a += b

-= It subtracts the right
operand from the left
operand and assigns the
result to the left
operand.

a -= b

*= It multiplies the right
operand with the left
operand and assigns the
result to the left
operand.

a *= b

/= It divides the left
operand with the right
operand and assigns the
result to the left
operand.

a /= b

Example:

a && b : 1

a || b = 1

!a: 0

Output:

Chapter 4
C Conditional Statements

if...else Statements

The if-else statement in C is used to make decisions based on
conditions. It allows you to execute a block of code if a specified
condition is true, and another block of code if the condition is false.

The syntax of the if-else statement in C is:

Syntax:

#include <stdio.h>

int main ()

{

 int a = 15;

 int b = 6;

 printf ("a = b = %d\n", a = b);

 printf ("a += b = %d\n", a += b);

 printf ("a -= b = %d\n", a -= b);

 printf ("a *= b = %d\n", a *= b);

 printf ("a /= b = %d\n", a /= b);

 return 0;

}

a = b = 6

a += b = 12

a -= b = 6

a *= b = 36

a /= b = 6

if (condition) {

 //code to be executed if the condition is true

} else {

 //code to be executed if the condition is false

}

Example:

Output:

if-else Ladder

If we want to check the multiple conditions then if-else ladder can used.

Syntax:

Example:

#include <stdio.h>

int main ()

{

 int num = 15;

 if (num > 0) {

 printf ("%d is a positive number.\n", num);

 } else {

 printf ("%d is a negative number.\n", num);

 }

 return 0;

}

15 is a positive number.

if (condition) {

 //code

}

else if (condition) {

 //code

}

else if (condition) {

 //code

}

else {

 //code

}

Output:

Chapter 5

C Switch Statement

The control statement that allows us to make a decision from the number
of choices is called a switch.

The syntax of the switch case statements:

#include <stdio.h>

int main ()

{

 int num = -6;

 if (num > 0) {

 printf ("%d is a positive number.\n", num);

 }

 else if (num < 0) {

 printf ("%d is a negative number.\n", num);

 }

 else {

 printf ("%d is a Zero.\n", num);

 }

 return 0;

}

-6 is a negative number.

switch (integer expression)

{

case 1:

do this;

case 2:

do this;

case 3:

do this;

default:

do this;

}

Example:

Output:

Chapter 6

 C Loops

Loops in C are used to execute a block of code until the specified
condition is met.

Following are the three types of loops in C programming:

 for loop
 while loop
 do-while loop

#include <stdio.h>

int main()

{

 int i = 3;

 switch (i)

 {

 case 1:

 printf("I am Statement 1");

 break;

 case 2:

 printf("I am Statement 2");

 break;

 case 3:

 printf("I am Statement 3");

 break;

 default:

 printf("I am default");

 break;

 }

 return 0;

}

I am Statement 3

for Loop

A for loop in C programming is a repetition control structure that allows
programmers to write a loop that will be executed a specific number of times.

The for loop allows us to specify three things about the loop:

 Setting a loop counter to a initial value.

 Testing the loop counter to determine wheather its value has
reached the number of repetitions desired.

 Increasing the value of loop counter each time the body of the loop

has been executed.

While Loop

The while loop is used when you want to execute a block of code as long
as a condition is true.

do-while Loop

The do-while loop is similar to the while loop. This loop would execute its
statements at least once, even if the condition fails for the first time.

for Loop

A for loop in C programming is a repetition control structure that allows
programmers to write a loop that will be executed a specific number of times.

Syntax

Example:

for (initialization; testExpression; increment/decrement)

{

 // block of code

}

#include <stdio.h>

int main()

{

 int i;

 for (i = 0; i <= 6; i++)

 {

 printf("%d", i);

 }

 return 0;

}

Output:

While Loop

The while loop is used when you want to execute a block of code as long
as a condition is true.

Syntax:

Example:

Output:

do...while Loop

The do-while loop is similar to the while loop. This loop would execute its
statements at least once, even if the condition fails for the first time.

Syntax:

0 1 2 3 4 5 6

while (condition)

{

 // block of code

}

#include <stdio.h>

int main()

{

 int i = 0;

 while (i < 8)

 {

 printf("%d", i);

 i++;

 }

 return 0;

}

0 1 2 3 4 5 6 7

do {

 // block of code

} while (condition);

Example:

Output:

Chapter 7

C Break and Continue

Break Statement

The break statement is used to break out of the loop in which it is
encountered. The break statement is used inside loops or switch statements
in C programming.

Example:

#include <stdio.h>

int main()

{

 int i = 0;

 do

 {

 printf("%d", i);

 i++;

 } while (i < 4);

 return 0;

}

0 1 2 3

#include <stdio.h>

int main () {

 int i;

 for (i = 0; i < 10; i++) {

 if (i == 6) {

 break;

 }

 printf ("%d", i);

 }

 return 0;

}

Output:

Continue Statement

The continue statement skips the loop's current iteration and proceeds to the
next one.

Example:

Output:

0 1 2 3 4 5

#include <stdio.h>

int main () {

 int i,j;

 for (i = 1; i <= 2; i++)

 {

 for (j = 1; j <= 2; j++) {

 if (i == j)

 continue;

 printf ("%d%d", i,j);

 }

 }

 return 0;

}

1 2 2 1

Chapter 8

 C Arrays

An array is a collection of similar data items. It is stored at contiguous
memory locations in arrays.

Array Declaration

Like other variables, an array needs to be declared so that the compiler
will know what type of an array and how large an array we want.

Accessing Elements of an Array

The index number of an element in an array makes it easy to access that
element. The index number starts from 0.

Example:

Output:

Change an Array Element

To modify the value of a given element, use the index number.

Example:

data_type array_name [size];

#include <stdio.h>

int main()

{

 int myArr[] = {2, 6, 8, 10};

 printf("%d", myArr[2]);

 return 0;

}

8

Output:

Chapter 9

 C Strings

Strings are used for storing text/characters. For example, "Hello World" is a
string of characters.

Example:

String Declaration

Declaring a string is the same as declaring a one-dimensional array.

Syntax:

Example:

#include <stdio.h>

int main()

{

 int myArr[] = {2, 6, 8, 10};

 myArr[1] = 5;

 printf("%d", myArr[1]);

 return 0;

}

5

char name[] = "John";

char string_name[string_size];

#include <stdio.h>

int main () {

 char str1[] = "Tutorials4Coding";

 printf("%s", str1);

 return 0;

}

Output:

Access Strings

To modify the value of a given element, use the index number.

Example:

Output:

String Functions

String functions are a collection of functions given by the C standard library
for working with strings in C programming.
Let us understand these functions one by one.

strlen():

This function counts the number of characters present in a string.

Example:

Tutorials4Coding

#include <stdio.h>

int main () {

 char str1[] = "Tutorials4Coding";

 printf("%c", str1[2]);

 return 0;

}

t

#include <stdio.h>

int main () {

 char str1[] = "Tutorials4Coding";

 printf("%d", strlen(str1));

 return 0;

}

Output:

strcpy():

This function copies the contents of one string to another.

Example:

Output:

strcat():

This function concatenates the source string at the end of the target string.
For example, "Hello" and "World" on concatenation would result in a string
“HelloWorld”.

Example:

16

#include <stdio.h>

#include <string.h>

int main () {

 char str1[20] = "Tutorials4Coding";

 char str2[20];

 strcpy(str2, str1);

 printf("%s", str2);

 return 0;

}

Tutorials4Coding

Output:

Chapter 10

C Functions
Functions in C are blocks of code that perform a specific task. They are

intended to improve code readability, modularity, and reusability by dividing

a program into parts.

Key points about functions

 Function Declaration

 Function Definition

 Function Calls

Function Declarations

Before using a function, it must first be declared. The declaration specifies
the function's return type, name, and parameters.

Syntax:

#include <stdio.h>

#include <string.h>

int main () {

 char str1[20] = "Hello ";

 char str2[] = "World";

 strcat(str1, str2);

 printf("%s", str1);

 return 0;

}

Hello World

return_type function_name (para_1, para_2){

 // block of the function

}

Function Definition

Function definitions consist of the function's actual implementation.

Function Call

A function is called by its name, followed by parenthesis.

Example:

Output:

Types of functions

 Library Functions

 User Defined Functions

Library Functions

In the C programming language, library functions are pre-defined
functions. These functions are declared in header files.

Example: printf(), scanf(), etc

#include <stdio.h>

// Function declaration

void func();

int main() {

 func(); // calling the function

 return 0;

}

// Function definition

void func() {

 printf("Execution Succesfull.");

}

Execution Succesfull.

User Defined Functions

User-defined functions are functions that the programmer creates to do
specific tasks. These functions are defined by the programmer based on
their needs and can be reused several times throughout the program.

Example: Any function defined by the programmer.

Recursion

Recursion is a programming method in C that involves calling a function
on itself to solve a problem.

Example:

Output:

#include <stdio.h>

int fibo(int);

int main()

{

 int terms = 12, i, n = 0;

 for (i = 1; i <= terms; i++)

 {

 printf ("%d\t", fibo (n));

 n++;

 }

 return 0;

}

int fibo(int n)

{

 if (n == 0 || n == 1)

 return n;

 else

 return (fibo(n - 1) + fibo (n - 2));

}

0 1 1 2 3 5 8 13 21 34 55 89

Chapter 11

C Structures

Structures are used to group variables of various data types under a single
name. For Example, a 'book' is a collection of items like title, author,
publisher, number of pages, date of publication etc. for dealing with such
data C provides a data type called structure.

Syntax:

Example:

Output:

struct MyStructure {

 dataType member1;

 dataType member2;

};

#include <stdio.h>

struct Books

{

 char title[40];

 char author[40];

 float price;

};

int main()

{

 struct Books book1 = {"Macbeth", "William Shakespeare", 100.00};

 printf("Title of the book is %s\n", book1.title);

 printf("Author of the book is %s\n", book1.author);

 printf("Price of the book is %f\n", book1.price);

 return 0;

}

Title of the book is Macbeth

Author of the book is William Shakespeare

Price of the book is 100.00

Chapter 12

C Files

File handling in C is a fundamental part of programming that lets you read
and write files on the system. It consists of opening files, reading data
from them, writing data to them, and then closing them once completed.

Types of Files in C

There are two types of files:

Text Files

A text files contains only textual information like alphabets, digits and
special symbols. An example of a text file is a .txt file.

Binary Files

A binary files is merely a collection of bytes. An example of binary file is a
.bin file.

C File Operations

There are different operations that can be perform on a file. These are:

 Creating of a new file

 Opening an existing file

 Reading from file

 Writing to a file

 Closing a file

Creating a File

To create a file in C, use the fopen() function with the proper mode.

Syntax

FILE *fptr;

fptr = fopen("filename.txt", "w");

Open a File

To open a file, use the fopen() function.

Syntax

Reading From a File

Use the functions like fscanf(), fgets() to read data from the file.

Syntax

Closing a File

When we have finished reading from the file, we need to close it. This is
done using the fclose() function.

Syntax

FILE* fopen("fileopen","mode");

FILE *fptr;

fptr = fopen("filename.txt", "r");

fclose(fp);

	Introduction to C
	What is C?
	Why Learn C?
	First C Program

	C Comments
	Single Line Comments
	Multi-line comments

	C Variables
	Variable Declaration
	Rules for Naming Variables

	Data Types
	C Constants
	C Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Assignment Operators

	if...else Statements
	if-else Ladder

	C Switch Statement
	C Loops
	for Loop
	While Loop
	do-while Loop

	for Loop
	While Loop
	do...while Loop
	Break Statement
	Continue Statement

	C Arrays
	Array Declaration
	Accessing Elements of an Array
	Change an Array Element

	C Strings
	String Declaration
	Access Strings
	String Functions
	strlen():
	strcpy():
	strcat():

	Chapter 10
	C Functions
	Key points about functions
	Function Declarations
	Function Definition
	Function Call
	Types of functions
	Library Functions
	User Defined Functions

	Recursion
	C Structures
	Chapter 12
	C Files
	Types of Files in C
	Text Files
	Binary Files

	C File Operations
	Creating a File
	Open a File
	Reading From a File
	Closing a File

